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ABSTRACT

In this paper axial vibrations of whirling bars are

studied using undeformed coordinates. It is found

that, in general, the effect of whirling in to lower

the natural frequencies of the bars. For the static

case an interesting result, which has not been pre-

viously reported, is obtained as a specialcase of the

dynamic problem. When the angular velocity of the

bar approaches certain critical values, "static res-

onances" occur and the axial displacements every-

where in the bar tend to become unboundedly large.

These resonances are explained physically. The

same problem is also worked out using final or de-

formed coordinates and it is shown that the static
resonances cannot come out of such an analysis.

Moreover, the rotation does not have any effect on

the natural frequencies when deformed coordinates

are used. The results of the analysis using undo-.

formed coordinates appear to be more compatible

with the physics of the problem.
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I. INTRODUCTION

The study of whirling bars i's of interest because they find application

as machine elements such as turbines, propellers and helicopter blades.

More recently, they have been employed as antenna elements of artificial

satellites used for communications purposes. In this paper axial vibrations

of whirling bars are studied using undeformed coordinates. It is found that,

in general, the effect of whirling is to lower the natural frequencies of the

bars. The advantage of using undeformed or initial coordinates is that they

yield, for the static case, an interesting result as a special case of the

dynamic problem. This result for the static case has not been previously

reported. When the angular velocity of the bar, w , approaches certain

critical values, wi, static resonances occur and the axial displacements

everywhere in the bar tend to become unboundedly large. These reso-

nances are explained physically. The same problem is also resolved using

final or deformed coordinates. Such a resonance can never result from an

analysis using deformed coordinates since, for the axial displacement, u,

to get arbitrarily large, the deformed coordinate must become arbitrarily

large. Thus, the only u that can become arbitrarily large is the one for

which the deformed coordinate becomes large, and the resonant character

of the solution is lost. As the angular velocity of the bar approaches zero,

the frequency equations reduce to those of bars that vibrate axially but are

otherwise at rest. A comparison of the static solutions obtained from the

use of deformed and undeformed coordinates is made. Moreover, the use

of undeformed coordinates does not even show the effect of rotation on the

natural frequencies.

II. DIFFERENTIAL EQUATIONS OF MOTION

Let (X, Y) be a reference system fixed in space and (x, y) a coordinate

system attached to the undeformed whirling bar with its origin coincident



with that of the (X, Y) system. The (x, y) coordinate system will then have

an angular velocity w (for a fixed x) which will be called the angular velocity

of the bar. If the displacement vector is defined as the difference between

the radius vector to the particle at time, t, denoted by R, and the radius

vector to the particle at some initial time, to, denoted by R 0 , then the

displacement vector, V, is given by R-R 0 and the acceleration vector by

a = a ([1], p. 72). Now V as it stands could be quite large, and con-atz

vective terms must be used in differentiating it with respect to time, since

small deformation theory cannot be applied ([2], p. 85). This would result

in a nonlinear theory, which is inconvenient. To eliminate the use of con-

vective terms, it is assumed that the particle does not deform greatly from

the undeformed rotating position (the x, y system rotates with the angular

velocity w). Define a displacement v such that V = r + v, where r is

the position vector to the rotating point located at x. The acceleration

wl(t+v' To carry out this process, set in awill then be given by a = at z

unit vector e in the x direction and e in the y direction. Then thex _,,t y

angular velocity vector w is given by

wzw ey ,(1)

and

r (x + u)e (2)

where u is the magnitude of the component of v in the x direction.

The other components of v in the direction of the tangent in the plane

of rotation, and in a direction transverse to the plane of rotation, are ig-

nored since only the axial vibrations of whirling bars are considered in this
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paper. One of this paper's object. is to bring out the advantage of using

undeformed or initial coordinates in this problem. Carrying out the differen-

tiation indicated earlier, the equation of motion, employing the usual assump-

tions for the one-dimensional elastic wave propagation in bars, is

au 2
-3 p= P w (x+u) (3)

at

where a, is the normal stress in the x direction and p is the density of the

material. To obtain equilibrium equations, deformed coordinates should be

used. However, in the limit of small strain theory (which assumption is

made here), the equilibrium equations and the stresses become identical

([1] , Chap. 5) for both systems of coordinates. The stress-strain relation

is

. Ey . (4)x

Introducing (4) into (3) yields

8u u 2 2 22 (5)

ax 2  at 2

where

a 2  z (6)E

and E is the modulus of elasticity.
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I1. BOUNDARY CONDITIONS

Two sets of boundary conditions will be considered. The first net may

pertain to the vibrations of a helicopter blade or a communications satellite

antenna, whereas the second set pertains to the web of a flywheel with a
rigid flange on the outside.

(a) The boundary conditions for the first case are:

u(0,t) = 0 , (7a)

-wl )= 0 (7b)

which correspond to the case of a fixed-free bar.

(b) The boundary conditions for the second case are:

u(0,t) = 0 (8a)

u(A, t) = 0 , (8b)

which correspond to the case of a fixed-fixed bar.

IV. SOLUTIONS OF BOUNDARY VALUE PROBLEMS

For the solution of the boundary value problem, split u such that

u(x.t) = ul(x) + uZ(xt) , (9)

where u I and u2 satisfy the following

dzI+ aWu I = W x (10)
dx
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and

2 u2 a2 u 2  (11)

The general solution of (10) gives the solution for the static problem and

may at once be written as

u I = a I sin awx + a 2cosax -x . (12)

A solution of (11) may be taken as

u 2 (x,t) = U(x) eJPnt (13)

where pn is the frequency to be determined. Substitution of (13) into (11)

results in

d2U 2 . 2+ a (W +pn) U = 0 (14)
dxn

The general solution of (14) is

=a3 sina w 0 (15)

Case (a): fixed-free bar

Since the boundary conditions (7) have to be satisfied for all values of

time, it follows that u I and u2 each have to satisfy (7). It may be



remarked that the static solution for u1 , as given by (12), differs from the

one given by Biezeno and Grammel ([3], p. 124) in that final coordinates

are used in [3] , whereas the use of initial coordinates in the present paper

has resulted in a different differential equation. Application of (7a) and

(7b) results in

a2 = 0 , (16)

and

1
Il aw con~~ ,w (17)

provided that w does not correspond to a root of

coscwi= 0 . (18)

For the present it will be assumed that w does not correspond to a root of

(18). The case when w corresponds to a root of (18) will be considered

separately. Hence the static solution is

sin awx
n= aw x (19)Iaw co s aw

For the case when w corresponds to one of the roots of (18), a solution to

(10), satisfying the boundary conditions (7a) and (7b), does not exist. When

one encounters such nonexistence of a solution to a physical problem it

must have significance. The physical problem must have some sort of a

solution even though it only tends toward infinity as w approaches W i , one

of the critical values [roots of (18)] . As wi approaches w ,, the constant a,



given by (17) becomes very large. Such values of wi are given by

W. , i= ,1 .. .. . (20)

Thus, the lowest angular velocity at which the static resonance occurs in a

fixed-free bar is the velocity at which the peripheral speed of the bar is

equal to - times the speed of sound in the material of the bar. At such

speeds the solution for uI becomes large for all values of x between zero

and J. Hence, one can say that, for any value of x between zero and J,

u I becomes unboundedly large as w approaches wi . This is evidently some

sort of a resonance phenomenon and Is directly a result of the use of unde-

formed coordinates in the present analysis. At first sight it would appear

that uI cannot become arbitrarily large, since there is no steady energy

input to make it do so. However, this reasoning is fallacious. Consider

the bar as being undeformed but having an angular velocity w at some in-

stant oi time t . Suppose that at this time the bar is allowed to deform.

The axial displacement for the steady state or static case, u l , will im-

mediately begin to increase, hopefully to attain some steady value. As uI

increases, the moment of inertia will increase, since the elemental mass

will now be located at a distance x+uI instead of at x. The angular mo-

mentum of the bar will then increase, since w is assumed to be constant,

and energy must be added to the system. It is not unreasonable to suppose

that there will be some value of w such that this process does not lead to

a steady bounded value of u1 , and the roots of (18) are just such values of

w. Actually, only the lowest value of wi is of consequence since it is un-

likely that equilibrium physically can be attained for w greater than the

lowest value of wi.
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For u 2 ' the application of boundary conditions (7a) and (7b) to (15)

results in

a 4 = 0 (21)

and

a ~ P~n co.osa n/ = 0 (22)

For a nontrivial solution it is required that

2 I = (2n+l)j. n=O,l2,... (23)

From (23) the frequency equation can be rewritten as

2

P 2n 1-\ - w2 n=0,1,Z,... (24)

If w is allowed to approach zero, (24) reduces to the frequency equation of

a fixed-free bar that is vibrating axially, but is otherwise at rest. Equation

(24) shows that, in general, the effect of whirling is to lower the natural fre-

quencies. It is of interest to consider two special cases arising from(24)

as w increases. First, it is possible for w to be large enough so that the

right member of(24) vanishes for a certain value of n. It can easily be

shown by referring to(IS) that this corresponds to a static instability in the
th

particular n mode. It should be remarked that this static instability is the

8



same am the one which has already been mentioned for u1 . Second, consider

the came when w is allowed to be large enough so that the right member of

(24) becomes negative for values of n < nc and is positive for n>nc. Then
for n>n c , vibrations exist whereas, for n<nc , Pn becomes imaginary and

these modes could get damped out or grow asymptotically with time depend-

ing on the sign. However, it im not meaningful to consider the vibrations of

the bar in this domain, since it is unlikely that static equilibrium can be
attained for such values of w

Case (b): fixed-fixed bar

Application of boundary conditions (8) to (12) gives

a 2 = 0 , (25)

and

a1  n (26)

provided that w does not correspond to a root of

sin cat - 0 (27)

Hence,

= sin-l. sinawc - x (28)

When wi corresponds to a root of (27); i. e.,

w i = - / , i=1,2,3,. .. (29)
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static resonances occur, as has already been explained in the case of a
fixed-free bar. The lowest angular velocity at which the static resonance

occurs in a fixed-fixed bar is the velocity at which the peripheral speed of

the bar is equal to w times the speed of sound in the material of the bar.

Only the lowest value of is of interest as has been remarked in the case
of a fixed-free bar.

Similarly, when applied to u 2 , the boundary conditions (8a) and (8b)

yield

a 4 = 0 , (30)

and

a 3 min i a = 0 (31)3 'to +Pn

For a nontrivial solution it is required that

w 2 nw , n=1, 2, 3... , (32)

from which the frequencies for the fixed-fixed bar are

2 n2w2 E 2Pn = w =,23 . .13

If w approaches zero in (33), the resulting equation for Pn is the same as

the one for a fixed-fixed bar that is vibrating axially but is otherwise at
rest. Remarks pertinent to the ones for the fixed-free bar apply also here,

when w becomes successively large.
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V. SOLUTION USING DEFORMED COORDINATES

If now deformed or final coordinates are used in obtaining the inertial
forces, the equation of motion (5) becomes

82 2

u 2 8 2u 2 (34)
ex at

Split u such that

u(xt) = ullX) + u2 (x, t) , (35)

where u I and u2 satisfy the following

2d2Ul 2 2
I+ a 2W2 x 0 (36)

dx

and

82 u 2 82uz
-- - a = 0 (37)x2

The general solution of (36) is the solution for the static problem and may

be written as

u = a x+a 2  - --.-- (38)
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Equation (38) is identical to the one that can be deduced from (3]. For the

fixed-free bar the static solution, after evaluating the constants of integra-

tion using (7a) and (7b), is

uI  - ( 2  x 2

-- " 2 1 Y (39)

Equation (39) shows that the resonant character of the static solution is

indeed lost when deformed coordinates are used. Furthermore, it follows

from (37) that the frequency equation for a whirling bar that is vibrating

axially would be independent of the angular velocity, w , with which the bar

is whirled. A steady input of energy can be made into the system free of

any dissipation without an instability ever occurring, a result which does

not appear to be realizable.

VI. NUMERICAL EXAMPLE

To illustrate the results of the analysis, numerical examples were

worked out for a steel bar 100 inches in length. The static displacements

for a fixed-free bar, as given by deformed and undeformed coordinates,

are given in Fig. 1. The ratio of the displacement at the tip of the fixed-
free bar obtained from the use of undeformed and deformed coordinates is

plotted as a function of w in Fig. 2. The example shows that for small

values of w the two results do not differ appreciably, but the results of the

analysis using undeformed coordinates indicate a new limit to the speed at

which the bars can be whirled even with an exotic material having a very

high yield point. Figures 3 and 4 [obtained from (24) and (33)] show the

effect of whirling on the natural frequencies of fixed-free and fixed-fixed

bars, respectively. The intersection of the curve and the abscissa

indicates the occurrence of instability.
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VII. CONCLUSION

The effect of whirling on the axial vibrations of a bar has been studied

in this paper. Certain advantages of the use of undeformed coordinates in

this problem are indicated and the results of such an analysis appear to be

more compatible with the physics of the problem. When the angular velocity

of the bar reaches certain critical values, static resonances occur. These

resonances point to a new limit to which the bars can be whirled even with

the use of an exotic material having a very high yield point.
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